Koldioxid är bakteriedödande
En studie vid Karolinska institutet visade att tillväxten av stafylokocker var 1 000 gånger högre när bakterierna exponerades för vanlig luft (37 grader) under 24 timmar jämfört med exponering för 100 procent koldioxid.
Sedan 1930-talet används koldioxid vid förpackning av livsmedel. Bröd, ost, kyckling, kaffe är exempel på produkter som förpackas i 100 procent koldioxid tack vare dess antibakteriella verkan.
Låga nivåer av koldioxid ökar infektionsrisken
Vid en försämrad andning sänker vi nivåerna av koldioxid i kroppen och skapar därmed en gynnsam miljö för bakterier att växa till sig och infektionsrisken ökar.
Studie på koldioxid och bakterietillväxt | |
---|---|
Titel | Carbon dioxide inhibits the growth rate of Staphylococcus aureus at body temperature |
Tidskrift | Surg Endosc. 2005 Jan;19(1):91-4. Epub 2004 Nov 11. |
Författare | Olsen KD, Kern EB, Westbrook PR. |
Sammanfattning | BACKGROUND: Since the 1930s, carbon dioxide (CO(2)) has been combined with cold storage for the preservation of food. However, its use for the prevention of surgical wound infection was long considered to be impractical. Now CO(2) is widely used during laparoscopic procedures, and a method has been developed to create a CO(2) atmosphere in an open wound. The aim of this study was to investigate the effect of CO(2) on the growth of Staphylococcus aureus at body temperature. METHODS: First, S. aureus inoculated on blood agar were exposed to pure CO(2) (100%), standard anaerobic gas (5% CO(2), 10% hydrogen, 85% nitrogen), or air at 37 degrees C for a period of 24 h; then a viable count of the bacteria was made. Second, S. aureus inoculated in brain-heart infusion broth and kept at 37 degrees C were exposed to CO(2) or air for 0, 2, 4, 6, and 8 h; then the optical density of the bacteria was measured. RESULTS: After 24 h, the number of S. aureus on blood agar was about 100 times lower in CO(2) than in anaerobic gas (p = 0.001) and about 1,000 times lower than in air (p = 0.001). Also, in broth, there were fewer bacteria with CO(2) than with air (p < 0.01). After 2 h, the number of bacteria was increased with air (p < 0.001) but not with CO(2) (p = 0.13). After 8 h, the optical density had increased from zero to 1.2 with air but it had increased only to 0.01 with CO(2) (p = 0.001). CONCLUSION: Pure CO(2) significantly decreased the growth rate of S. aureus at body temperature. The inhibitory effect of CO(2) increased exponentially with time. Its bacteriostatic effect may help to explain the low infection rates in patients who undergo laparoscopic proceduresThe purpose of this study was to determine the effect of acute nasal obstruction on sleep and breathing in eight normal persons. The subjects were randomized into two groups. One night the subject was studied with the nose open and a second night with the nose obstructed. The electroencephalogram, electrocardiogram, inspiratory effort, nasal and oral airflow, and oxygen saturation were monitored. Sleep proved to be both subjectively and objectively disturbed.The subjects with the nose obstructed awoke more often, had a greater number of changes in sleep stage, had a prolongation of rapid-eye-movement (REM) latency, and spent a greater amount of time in stage I non-REM sleep (light sleep). Acute nasal obstruction caused a statistically significant increase in the number of partial and total obstructive respiratory events (obstructive hypopnea and obstructive apnea). Sleep apnea developed in one subject during this study merely on the basis of acute nasal obstruction. |
The post Koldioxid är bakteriedödande appeared first on Medveten Andning.